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Domain growth in computer simulations of segregating two-dimensional binary fluids

S. Bastea and J.L. Lebowitz
Department of Physics and Mathematics, Rutgers University, Piscataway, New Jersey 08855-0849
(Received 2 May 1995)

We studied phase segregation kinetics with hydrodynamic interactions, following a quench, in
the two-dimensional binary fluid lattice gas model of Rothman and Keller [J. Stat. Phys. 52, 1119
(1988)]. Carrying out computer simulations at different overall fluid densities d, with equal volume
fractions of the two components, we find that the growth of domain sizes R(t) at different d has a
scaling behavior with all data well fitted by R(t)/Rs = a + b(t/ts)?/3. The characteristic lengths
R,(d) and times t,(d) are related in a simple way to the viscosity and surface tension of the system
at different values of d. We also discuss the growth exponents expected in the general case of phase

segregation with hydrodynamic interactions.

PACS number(s): 64.70.Ja, 61.20.Ja, 64.60.Qb, 64.75.+¢g

I. INTRODUCTION

Phase ordering is the process through which a sys-
tem evolves towards equilibrium following a temperature
quench from a homogeneous phase into a two-phase re-
gion. The theoretical understanding of this highly nonlin-
ear phenomenon remains, after more than three decades
since the classical work of Cahn and Hilliard [1], a very
challenging problem. During this period there has been
an accumulation of much experimental and computer
simulation evidence showing that the domain growth in
phase separating systems is a scaling phenomenon [2-5].
More precisely, there exists at late times a single char-
acteristic length R(t), such that the domain structure is
in a statistical sense independent of time when lengths
are scaled by R(t), the average domain size at time t¢.
The dependence of R(t) on time, the growth law, ap-
pears to have the asymptotic form R(t) x t*, with the
growth exponent a depending only on the conservation
laws obeyed, the dimensionality of the system, and the
symmetry of the order parameter [6].

Much effort has gone into trying to predict or justify
the growth exponents characterizing different classes of
systems, but success is still limited. For systems with
conserved order parameter and without momentum con-
servation, such as binary alloys, Lifshitz and Slyozov
found in their pioneering work [7] that for small volume
fractions of one of the species the domain growth should
follow a power law with exponent a = % This result
has been confirmed by experiments and computer simu-
lations [2]. Although the first theoretical and computa-
tional attempts [8] to extend it to critical quenches (equal
volume fractions of the two species) were not very suc-
cessful, its validity in diffusive systems for all concentra-
tions and for all dimensions is now universally accepted
[2,9]. This is indeed a remarkable universality, reminis-
cent of the t7 diffusive behavior outside the coexistence
region.

The situation is much less clear, both theoretically and
experimentally (including computer simulations), about
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phase segregation with hydrodynamic interactions, i.e.,
when both the order parameter and momentum are lo-
cally conserved, as in binary fluid mixtures following a
quench. This uncertainty concerns both the correct cou-
pling between the Cahn-Hilliard equation for the order
parameter and the Navier-Stokes equation for the fluid
velocity as well as the growth exponent a. Based mainly
on dimensional analysis, Siggia predicted [10] that the
domain growth in three-dimensional (3D) binary fluids
at equal concentrations (critical quench) should have a
crossover, as time goes on, from an a = % regime to an
o = 1 regime. This crossover was indeed observed in ex-
periments [11-13]. The linear growth was also confirmed
by some numerical simulations [14-16], but not others
[17,18], despite a very careful analysis [17]. Much work
remains to be done to understand the physical mech-
anisms driving domain growth at different volume frac-
tions, and to improve the very demanding computational
methods in 3D.

Siggia’s derivation of a linear growth was analyzed in
2D by San Miguel et al. [19], who argued, using linear
stability analysis, that the & = 1 regime is not possi-
ble in 2D. For 2D binary fluid mixtures with approxi-
mately equal volume fractions they proposed droplet co-
alescence to be relevant in domain growth; this mecha-
nism gives, by simple dimensional analysis, an exponent
a = ; in 2D and a = } in 3D. (Droplet coalescence,
rather than the Lifshitz-Slyozov mechanism, is probably
responsible for the a = % regime observed in 3D binary
fluids [2,10,11,13,20,21].) An a = % exponent was ob-
served in molecular dynamics (MD) simulations on a 2D
Widom-Rowlinson type mixture for early times by Ve-
lasco and Toxvaerd [22], who also noted a rise in slope
at latter times. Subsequently, Ossadnik et al. [23] argued
on the basis of more extensive MD simulations that the
exponent should stay at a = % A similar result was
obtained recently by Leptoukh et al. [24]. On the other
hand lattice Boltzmann (LB) simulations in 2D yield a 2
exponent [14,16], as predicted by Furukawa [25,26], while
Langevin dynamics simulations find an exponent close to
2 [27,28]. To resolve this question we carried out simu-
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lations on a 2D binary fluid immiscible lattice gas model
(ILG) of Rothman and Keller [29] (see also Ref. [30] for
a related model), where we could gather reliable statis-
tics. The model is described in Sec. II and the results in
Sec. III. A description of our current understanding of
different growth regimes in binary fluids is given in Sec.
IV, where we also discuss possible additional simulations
and experiments.

II. DESCRIPTION OF MODEL

The 2D ILG is based on the Frisch, Hasslacher, and
Pomeau (FHP) model [31], which is a discrete — in both
space and time — lattice gas model on a triangular lat-
tice. In the version of FHP used by Rothman and Keller
up to seven particles may reside at a site. At each site
there are seven available velocity states: six unit veloc-
ity states connecting neighboring sites on the lattice and
a zero velocity state corresponding to a “rest particle.”
The discrete time dynamics consists of two steps. First,
particles at one site change their velocities according to
collision rules conserving the mass (particle number) and
linear momentum. Then they travel to the neighboring
sites according to their new velocities and the process
repeats itself at the next time step. The macroscopic
behavior of this model is described at low velocities by
incompressible Navier-Stokes-like equations [32].

The ILG is built on the above foundation. Two kinds
of particles are introduced, “red” and “blue,” and the
collision rules are changed to encourage phase (color) seg-
regation while conserving momentum and the number of
reds and blues. This is accomplished by introducing a red
field 7(&) and a blue field b(Z). The red field is defined
as the set of seven Boolean variables

r(&@) = {r:(@) € {0,1}, i =0,1,...,6}; (1)

r;(£) indicates the presence or absence of a red particle
with velocity & at lattice site & & = 0 and & through
G are unit vectors connecting neighboring sites on the
triangular lattice. The blue field is defined in a similar
fashion. Red and blue particles may simultaneously oc-
cupy the same site but not with the same velocity. The
phase segregation is generated by allowing particles from
nearest neighbors of site £ to influence the output of a
collision at &. Specifically, a local color flux ¢[r(&), b(Z)]
is defined as the difference between the net red momen-
tum and the net blue momentum at site Z:

7[r(2),b(2)] = Z Gi[rs(Z) — b: ()] (2)

-

and a local color field f(&) as the lattice gradient of the
order parameter field ®(Z):

®(z) = Z[m(f) = bi(2)] , 3)

f@ =Y ae@+a). (4)

%
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The “work” performed by the color flux against the color
field is

W(’r‘, b) = —f' (i’(r, b) . (5)

The result of a collision at site &, » — v/ and b — ¥,
is then with equal probability any of the outcomes which
minimize the “work”

W(’I", b,) = min"‘”,b”W(T", bl/)’ (6)

subject to mass, color, and momentum conservation.
(This implies a very deep temperature quench, arguably
one at 7' = 0.) When implementing the above algorithm
we used the scheme proposed originally by Rothman and
Keller which reduces the size of the collision table by al-
lowing only 36 directions for the color field f [29]. This
model has been shown to exhibit surface tension and to
satisfy Laplace’s law [29,33,34].

III. SIMULATION RESULTS

We used a 256 x 256 lattice with periodic bound-
ary conditions and studied the evolution of the system
at seven reduced densities d: 0.29,0.3,0.31,0.35, 0.4, 0.45,
and 0.75, where d = £ and p is the average number of
particles per site. The reason for using these densities
is that for d smaller than about 0.25 the segregation no
longer takes place [33-35]. Also, the adherence of the
FHP model to the Navier-Stokes equations is true only
for d < 0.5 [32].

At each density the initial distribution of particles was
random, with reds and blues equally probable (critical
quench). A typical evolution of the two-fluid mixture
is shown in Fig. 1. To probe the domain structure we
studied the pair correlation function at time ¢ following
the quench:

CFt) = %<Z<I>(a'c‘,t)<1>(:i:’+?,t)> : )

where V is the volume, and its Fourier transform, the
equal time structure factor:

S(k,t) = (|®(k,1)|>), (8)

the average being in both cases over the initial conditions.
The spherical (circular in 2D) averages of the above pro-
vide C(r,t) and S(k,t). The late time scaling forms for
C(r,t) and S(k,t) are [2,5]

C(r,t) = G(r/R()) , (9)

S(k,t) = R(t)PF(kR(2)), (10)
where D is the spatial dimensionality and G and F
are time independent functions. F(u), u = kR(t), is
the structure factor and its tail should satisfy Porod’s
law: F(u) o« v P+ 4 > 1. As a measure of
the domain size we made the usual choice, the dis-
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tance at which C(r,t) first crosses zero. As a consis-
tency check we computed also the average wave number
k= 3, kS(k,t)/ X4 S(k,t); its inverse should also be
a measure of the domain size [2]. For each density the
average of at least 16 independent runs was taken to de-
termine the growth law R(t). The total number of runs
for all densities was 148.

The dependence of the domain size on time is shown
in Fig. 2 for all densities. The collapse of the curves into
a single one through scaling in both length and time is
possible for all reduced densities d smaller than 0.5. (For
d = 0.75 the scaling is not possible, although the asymp-
totic exponent seems to be also %, as for the other curves;
see Fig. 2.) We found the best scaling (up to a multiplica-
tive constant in both length and time) and the result is
shown in Fig. 3. This shows both that the scaling z:ls
very good and that the resulting function is r = a + b73,
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FIG. 2. Domain size (in lattice units) as a function of time
for all densities; log-log plot. The d = 0.75 curve has been
moved down 0.125 log units for easier viewing.
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FIG. 1. Time evolution of the two-fluid
mixture for d = 0.3. The sites with posi-
tive order parameter are black; if the order
parameter is zero the site is colored by look-
ing at the nearest neighbors or randomly (in
this order).

where r = hfi and 7 = %. This is in agreement with

LB simulations of a similar 2D binary fluid [14] and with
the results in [25-27]. The characteristic length and time
scales R, and t, are related to the physical parameters of
the system as suggested by the derivation of the relation
R(t) « t3 [26]. This derivation is based on a dimen-
sional analysis of the Navier-Stokes equation, viewed as
a balance between a driving force and a “friction” force.
The driving force is the gradient of the surface tension
induced pressure of the liquid mixture, while the friction
force is made up of viscous and “inertial” parts. When
the viscous friction dominates a linear growth regime is
predicted as in Siggia [10]. As the domains become large
we get to an inertia dominated regime with growth ex-
ponent o = % The crossover between these two regimes
takes place [5,25] when the domain size is of the order
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FIG. 3. Domain size as a functionzof time for all densities
d < 0.5, in scaled variables r and 75; r = Ri and 7 = ;‘—
The best line fit is drawn.
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of the hydrodynamical length R, = 5;3, where p is the

density, v is the kinematic viscosity, and o is the sur-

face tension coefficient. The growth law is then given by
2

R() tyZ R 3
Ry, oc(E‘)377.2‘;>>1, Wherethz"_U;L_

In order to estimate Rj and t; and see how they com-
pare with R, and t, for the FHP model, which behaves
like a fluid in the continuum limit [32], we need to know v
and o; the density p is simply the average number of par-
ticles per site. The kinematic viscosity v was computed
as a function of density in the Boltzmann approxima-
tion and also through computer simulations [32,34,36,37].
The 2D ILG was shown to exhibit surface tension and to
satisfy Laplace’s law, and the surface tension coefficient o
was determined using the Boltzmann approximation and
checked through simulations [33,34]. Using these results
we estimated Ry, and tj; we show them in Fig. 4 together
with R, and t, as found by collapsing the growth laws
into a single curve. (As R, and t, were both determined
up to a multiplicative constant, the best fit was used.)
The agreement is good considering the approximations
involved when determining v and o and the g factor
problem of the FHP models [32]. This indicates that
the underlying similarity of the growth laws at different
densities of this model is indeed related to the physical
parameters p, v, and o through R; and ¢.

In Fig. 5 we show the structure factor F'(u), with the
maximum normalized to 1, for all densities. While it
seems to be time independent at late times, as expected
if dynamic scaling is to be true, Porod’s law is best sat-
isfied for the higher densities. This is probably a con-
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FIG. 4. The scaling t, and hydrodynamical ¢, times (a)

and the scaling R, and hydrodynamical R lengths (b) are
shown; Ry and t, are defined in the text.
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FIG. 5. The structure factor F(u) for all densities. For
each density F'(u) is shown beginning at ¢ = 1000 in steps of
1000, up to the latest available time.

sequence of the discreteness of the model. The small »
behavior, F(u) ~ u?, is in agreement with [14]. Some
very recent MD simulations involving quenching below
the triple point of a Lennard-Jones fluid indicate a scaled
structure function with a time dependent prefactor [38].
We do not see such a behavior in our simulation.

IV. DISCUSSION

We now summarize briefly the picture that seems to
be emerging for the growth exponents of binary fluids at
close to equal volume fractions of the two components, in
both two and three dimensions. This picture appears to
us consistent with all the theoretical, computational, and
experimental work mentioned in this paper. At very late
times (or large domain sizes R > R}) the domain growth
is dominated by inertial hydrodynamics which gives an
a= % exponent in both 2D and 3D. This regime is pre-
ceded in 3D (R < R}) by a viscous hydrodynamic regime
with a = 1, and at even earlier times by a ts growth,
driven by Brownian droplet coalescence, as observed in
[10-13]. In 2D the linear growth was ruled out on lin-
ear stability grounds by San Miguel et al. [19]; therefore
the inertial hydrodynamic regime should be preceded di-
rectl){ by growth through droplet coalescence which gives
a=z. .

T112is scenario is clearly consistent with both our and
Ref. [14] simulation work in 2D which are in the R(t) >
Ry, regime, and it could explain the % exponent found in
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[22] and [24]: probably R(t) < Rs. It is also consistent
with the experimental and simulation work in 3D [11-14].
In all these cases R} can be estimated to be bigger than
the maximum domain size shown. On the other hand
the a = 1 regime is never observed in [18], where the 3D
ILG is used, although the system size is the same as in
[14]. Using values of n and o as given in [39], Rj, can be
estimated to be less than 1, so R > Rj at all times; the
exponent seems indeed to be around %

To check this picture further it would be interesting
to carry out more simulations in 2D for R(t) < R, and
in 3D for R(t) > Rp. This is possible using the lat-
tice Boltzmann models, for which the viscosity and the
surface tension coefficient can be varied independent of
the density [14]. If our analysis is correct, the growth in
the region R(t) < Rp should yield in 2D o = % while
for 3D there should be a crossover to a t3 regime when
R > Rj. The experimental study of a crossover to a = %
is much more difficult. The reason is that the time scales
for spinodal decomposition are typically very small for
fluids [2]. This difficulty is usually overcome by making
measurements very close to the critical point, a typical
temperature quench being of the order of 10-100 mK.
As o vanishes at T = T., R}, for such quenches is bigger
than 0.1 cm, while the typical domain size studied is of
the order of 1073 cm.

While our analysis and discussion has been in terms of
Rj, and tj, the scaling variables prefered by experimen-
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talists are R, = £ and t, = %, where £ is the correla-
tion length and D is the diffusion constant. Quenches
performed at different temperatures have been found to
scale in these variables in both the o = 1 [13] and a =1
regimes [11]. When growth is dominated by hydrody-
namics (o = 1) scaling by Rj and t, gives R(t) ot
while scaling by R, and t. yields R(t) « %t. These two
are equivalent as o o< kBT and D k&L,

We note finally that away from a critical quench, at vol-
ume fractions in the region 0.02-0.3, the droplet coales-
cence mechanism completely dominates the segregation
in 3D, such that only a t3 regime is observed [13,11,21].
One would expect approximately the same qualitative
behavior in 2D, but with a corresponding exponent of
%. At even smaller volume fractions the Lifshitz-Slyozov
mechanism might become important, giving an a = 1
exponent in both 2D and 3D.
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